

Advanced Reactor Technology Demonstration with NRIC

JAEA Fourth Symposium on US-Japan Nuclear Energy Research Cooperation October 21, 2020 Ashley E. Finan, Ph.D., NRIC director

5-Year Program Objectives

Enable demonstration of at least 2 advanced reactors

- Make available infrastructure, sites, materials, expertise
- Provide regulatory support
- Best practices in public engagement

Prepare DOE/labs for continuing innovation and demonstration

- Develop best practices for planning/construction/demonstration of nuclear projects
- Develop enduring infrastructure and expertise
- Establish methods for efficient coordination among laboratories

3-year High-Level Milestones

Establish resource team structure and inter-lab cooperation modes

Complete preparation of demonstration test bed facilities

Demonstration of MARVEL with private sector partners

Prepare potential demonstration sites

Demonstrate advanced construction technology in costshared partnership

NRIC and GAIN are Complementary and Coordinated Efforts to Support the Nuclear Energy Industry

GAIN

- Established in 2015 as a resource for accelerated development of nuclear innovations with lab partners
 - Comprehensive resource to entire nuclear innovation ecosystem at all development stages
 - Provides streamlined access to testing, MASL, experimental facilities, lab expertise, and legacy data
 - Regulatory expertise (e.g. NRC advanced reactor licensing strategy support)
 - Financial support

- Provides a capability for building and demonstrating reactor concepts
 - Focused program to enable innovators nearing demonstration stage
 - Provides access to sites, required upgrades, site services, fuel material/fabrication facilities, and demonstration process support

NRIC

- Provides regulatory assistance related to demonstration
- Facilitates NRC observation/ learning

Empowering Innovators

- Private Sector Driven Effort
- NRIC Resource Team
- Virtual Test Bed
- Demonstration Resource Network
 - Experimental facilities
 - Fuel facilities
 - Test beds
 - Demonstration sites

Demonstration Test Bed In Development

- User input received
- Functional and Operational Requirements Defined
- Concept of Operations Defined
- Digital engineering implemented
- Preconceptual design complete
- Preliminary design in FY21

EBR-II Test Bed Information

- 80' Diameter x 45' Tall
- Built to house EBR-II reactor which began operations in 1964, ran across 30 years
- 6-month Pre-Conceptual Design effort to modify facility for reactor demonstrations completed in September of FY' 20

MSTEC: Molten Salt Thermophysical Examination Capability

- modular hot cell where the safety and performance of irradiated molten salt fuel samples can be characterized
 - First-of-a-kind capability world leading
 - Support for designers currently developing MSRs
 - Capacity to validate liquid fuel performance and safety to enable operation
 - Comparable to existing solid fuel testing capabilities

- Completed Initial Siting Evaluation of 8 national sites with ANL, ORNL, U-Michigan
 - Additional sites in FY21

- Identified 9 candidate INL sites and initiated preparation for demonstration projects
 - Seismic; meteorological; grid access; water; environmental; regulatory; cost savings.

Addressing Cost and Markets

- Digital Engineering
- Advanced Construction Technologies
- Integrated Energy Systems

MARVEL: Microreactor Applications Research, Validation and Evaluation Project

- 100 kWth/20 kWe microreactor that produces electricity or heat for applications testing
- Resolve leading technology gaps
 - Integration with end-user applications (hydrogen, heat, desal, etc.)
 - Advanced operating modes; autonomy
 - Engage users to identify challenges
- Experience base for NRIC
 - Rapid demonstration at national lab
 - NEPA evaluations
 - Operator readiness and training
 - Safety basis
 - Engineering, design, assembly

Site: TREAT Storage Pit (8'x12'x10') and TREAT control room

Reactor in TREAT storage pit

Control Room

Goals for FY21 – Maintain progress to support demonstrations by the end of 2025 and sustained innovation

Questions?

a<u>shley.finan@inl.gov</u> nric.inl.gov

